2D Materials: Electronic structure, Devices and Applications
Permanent Personnel
Current PhD Students:
Wenyi Wu, Ali Fakih, Edoardo Sterpetti
Past PhD students
Zhesheng Chen, Emilio Velez, Mohammed Boukhicha, Adrian Balan
Research areas:
Phase transitions in 2D driven by space charge doping and dimensionality
- Superconductivity, insulator-metal transition, charge density waves. These phenomena are directly related to the density of electronic levels at the Fermi level, the strength of electron-phonon coupling in a given material and to dimensionality. Our strategy is to control the density of states through the space charge doping method we have developed, as shown by a recent study on MoS2 in which we induce superconductivity. The promise of this line of research is confirmed by ongoing work on various materials like hi-Tc superconductors, semiconductors and transition metal oxides. Our future work will concentrate on provoking and controlling phase transitions with space charge doping.
- Kosterlitz-Thouless transitions and Topological order. Since space charge doping is active in a layer of the order of a nanometer, the doped area in our samples is always two dimensional. In two dimensions phase transitions are predicted to be of infinite order (Kosterlitz and Thouless), with a disordered high temperature phase and a quasi-ordered low-temperature phase. Space charge doping provides a new way of looking at the insulator-superconductor transition in a single 2D sample by varying carrier density and magnetic field and examining theoretical predictions.
Onset of two-dimensional superconductivity in space charge doped few-layer Molybdenum Disulphide
http://www.nature.com/articles/ncomms9826
Space charge induced electrostatic doping of two-dimensional materials: Graphene as a case study
http://aip.scitation.org/doi/abs/10.1063/1.4932572?journalCode=apl
Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.195316
Devices and Applications
- Transparent Conducting Electrodes (TCE). We propose a new technique of producing TCE’s through space charge doping of large area thin films. The vast majority of TCE’s are deposited on glass substrates. We use the specifity of space charge doping to induce ultra-high carrier density and conductivity in thin films deposited on glass substrates. We have demonstrated this possibility in both layered materials (graphene) and oxides (ZnO).
- Improving optoelectronic device efficiency. 2D materials are poised to introduce major gains in the field of optoelectronics as seen through the example of the simple photoconductor device. Combining layers of different materials with complementary properties can lead to a hybrid sandwich structure with new properties. Associating graphene (charge transport) with a layered semiconductor (light to charge conversion) can lead to a very efficient photoconductor. Instead of the lateral geometry for current transport in standard devices, a vertical geometry in ultra-thin devices can further maximize effective device volume and minimize losses in transport.
A high performance graphene/few-layer InSe photo-detector
http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/C5NR00400D#!divAbstract
Anodic bonded 2D semiconductors: from synthesis to device fabrication
https://hal.archives-ouvertes.fr/hal-01053499/
Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures
http://link.springer.com/article/10.1007%2Fs12274-014-0444-9
Patents
- Anodic bonding: a method to make few layer 2D films of layered materials (WO 2009 074755)
- Space Charge doping: A method to electrostatically dope 2D thin films (FR 1557308)
Graphene made easy: High quality, large-area samples
http://www.sciencedirect.com/science/article/pii/S0038109809000829
Space charge induced electrostatic doping of two-dimensional materials: Graphene as a case study
http://aip.scitation.org/doi/abs/10.1063/1.4932572?journalCode=apl
Techniques:
- Sample fabrication and characterization: Anodic bonding, physical vapour deposition (sputtering, evaporation); micro-Raman, AFM
- Clean room device fabrication
- Low temperature magneto transport
- In-situ space charge doping
- Low temperature Raman spectroscopy
- Low temperature infra-red spectroscopy
Relevant publications
Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001)
http://link.springer.com/article/10.1007%2Fs12274-014-0584-y
Atomic oxidation of large area epitaxial graphene on 4H-SiC(0001)
http://aip.scitation.org/doi/10.1063/1.4867348
Edge state in epitaxial nanographene on 3C-SiC(100)/Si(100) substrate
http://aip.scitation.org/doi/10.1063/1.4818547
Control of the degree of surface graphitization on 3C-SiC(100)/Si(100)
http://www.sciencedirect.com/science/article/pii/S0039602811003906
Epitaxial Graphene on 4H-SiC(0001) Grown under Nitrogen Flux: Evidence of Low Nitrogen Doping and High Charge Transfer
http://pubs.acs.org/doi/abs/10.1021/nn304315z
Epitaxial graphene on single domain 3C-SiC(100) thin films grown on off-axis Si(100)
http://aip.scitation.org/doi/10.1063/1.4734396
High quality 2D crystals made by anodic bonding: a general technique for layered materials
https://hal.archives-ouvertes.fr/hal-01053374/
Sharp interface in epitaxial graphene layers on 3C-SiC(100)/Si(100) wafers
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.205429
Anodic bonded graphene
https://hal.archives-ouvertes.fr/hal-00569705
Epitaxial graphene on cubic SiC(111)/Si(111) substrate
http://aip.scitation.org/doi/abs/10.1063/1.3427406?journalCode=apl
Egalement dans la rubrique
Zoom Science - De la carrière au temple : une histoire de circuit court sur l’île sanctuaire d’Apollon (Délos, Grèce)

Délos, l’une des plus petites îles des Cyclades, connue dans l’Antiquité comme le berceau d’Apollon et Artémis, abrite un des plus grands sites archéologiques grecs. Le marbre est le matériau le plus abondant dans les vestiges, ce qui contraste avec la géologie de l’île qui est, pour l’essentiel, un...
Contact
A. Marco Saitta
Directeur de l'institut
marco.saitta(at)sorbonne-universite.fr
Bruno Moal
Secrétaire général
33 +1 44 27 52 17
bruno.moal(at)sorbonne-universite.fr
Jérôme Normand
Gestion du personnel
Réservation des salles
jerome.normand(at)sorbonne-universite.fr
Antonella Intili
Accueil et logistique
Réservation des salles
antonella.intili(at)sorbonne-universite.fr
Ouafa Faouzi
Gestion financière
gestionimpmc@impmc.upmc.fr (gestionimpmc @ impmc.upmc.fr)
Cécile Duflot
Communication
cecile.duflot(at)sorbonne-universite.fr
33 +1 44 27 46 86
Contact unique pour l'expertise de matériaux et minéraux
Stages d'observation pour élèves de 3e et de Seconde
feriel.skouri-panet(at)sorbonne-universite.fr
Adresse postale
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590
Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5
Adresse physique
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5
Adresse de livraison
Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.
Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61
Fax : 33 +1 44 27 51 52