Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - Sorbonne Université/CNRS/MNHN/IRD

Etude expérimentale du dégazage volcanique - Julien Amalberti

Julien Amalberti - LSA, University of Michigan

 

Résumé

La croissance de la phase vésiculée, moteur de l’éruption, est contrôlée par les processus de diffusion qui permettent la migration des gaz (et notamment des gaz rares) dans les bulles. On utilise la haute volatilité des gaz rares comme traceur géochimique de l’évolution d’une phase gazeuse sans interaction chimique. Ainsi, documenter précisément les mécanismes de diffusion des différents gaz rares (He, Ne, Ar) lors de l’éruption (c’est-à-dire en fonction de la chute de température et de pression du système), permet de quantifier les phénomènes de fractionnement de la phase gazeuse. La compréhension des processus de fractionnements cinétiques permet dès lors de prédire le temps nécessaire pour atteindre une certaine quantité de gaz rares dans une bulle (située au sein d’un système magmatique), lors de l’éjection des laves. Pour cela, la compréhension de l’influence de la température et de la structure du réseau silicaté sur les coefficients de diffusion est nécessaire. Cependant, la compréhension physique des processus de diffusion ainsi que l’évolution des coefficients de diffusion en fonction de la température, n’est pas suffisante pour dériver des temps caractéristiques d’une éruption volcanique de type Plinian. La complexité symptomatique de tels systèmes nécessite une résolution numérique des équations de diffusion prenant en compte la dépendance des coefficients de diffusion à la température.

Plusieurs verres synthétiques et naturels de composition basaltique ont été fabriqués dans le but de déterminer la vitesse de diffusion des gaz rares. Les données de diffusivités expérimentales mesurées sur ces systèmes, depuis l’état vitreux de basse température (T = 423 K) jusqu’à des températures sur-liquidus (T = 1823 K), documentent nos connaissances des processus physiques de diffusion dans ces milieux. Un modèle numérique intègre ces données et permet de suivre en continue la variation des coefficients de diffusion lors de la trempe d’une lave. On a pu ainsi montrer :

- La relation particulière entre la structure du milieu diffusif et les espèces diffusantes. La quantité de formateurs de réseaux (SiO2) et de modificateurs (CaO - MgO - etc.) joue sur la connectivité des chemins de diffusions de chaque gaz rare, avec un effet antagoniste entre l’ouverture globale du réseau et la connexion des tétraèdres de la structure.

- La présence de comportements non-arrheniens des gaz rares proches de la Tg, due à la relaxation du réseau silicate.

- L’importance des données expérimentales dans l’étude des mécanismes de dégazage des magmas basaltiques. En effet, les études précédentes utilisent des extrapolations des coefficients de diffusion mesurés dans le verre pour extrapoler les diffusivités dans le liquide silicaté. Nos données montrent que le fractionnement cinétique des gaz rares pendant le dégazage de lave basaltique est surestimé par ces extrapolations basées sur les vitesses de diffusions aux basses températures (T << Tg).

03/10/16

Traductions :

    Egalement dans la rubrique

    Les séminaires ailleurs

    Nous avons sélectionné quelques sites sur lesquels sont recensés des séminaires pouvant vous intéresser :
    Semparis : les serveur des séminaires parisiens
    LPTMC
    SOLEIL
    ESPCI
    Laboratoire Léon Brillouin
    INSP
    IPGP
    CEA
    Colloquium Pierre et Marie Curie

    » Lire la suite

    Contact

    A. Marco Saitta

    Directeur de l'institut

    marco.saitta(at)sorbonne-universite.fr

     

    Bruno Moal

    Secrétaire général

    33 +1 44 27 52 17

    bruno.moal(at)sorbonne-universite.fr

     

    Jérôme Normand

    Gestion du personnel

    Réservation des salles

    jerome.normand(at)sorbonne-universite.fr

     

    Antonella Intili

    Accueil et logistique

    Réservation des salles

    antonella.intili(at)sorbonne-universite.fr

     

    Ouafa Faouzi

    Gestion financière

    gestionimpmc@impmc.upmc.fr (gestionimpmc @ impmc.upmc.fr)

     

    Cécile Duflot

    Communication

    cecile.duflot(at)sorbonne-universite.fr

    33 +1 44 27 46 86

     

    Expertiser une météorite

     

    Contact unique pour l'expertise de matériaux et minéraux

     

    Stages d'observation pour élèves de 3e et de Seconde

    feriel.skouri-panet(at)sorbonne-universite.fr

     

    Adresse postale

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5

     

    Adresse physique

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5

     

    Adresse de livraison

    Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

    Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61

     

     

    Fax : 33 +1 44 27 51 52