Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - Sorbonne Université/CNRS/MNHN/IRD

Soutenance de thèse de Pierre-Marie Zanetta

Pierre-Marie Zanetta, doctorant dans l'équipe ROCKS, soutient sa thèse le vendredi 27 septembre 2019 à 14 h.

Campus Lille, Polytech Lille, Avenue Paul Langevin, 59650 Villeneuve-d'Ascq, France - Amphi Chappe

Étude de l'accrétion des premiers solides de notre système solaire par microscopie électronique avancée

Les chondrites primitives sont les témoins de l’accrétion des astéroïdes. Elles sont constituées de composants de haute température (principalement des chondres de taille ~ 50 µm-1 mm) et d’une matrice fine interstitielle, riche en éléments volatils, tels que l’eau et la matière organique. Les couronnes à grains fins se situent à l’interface entre les chondres et la matrice et sont porteuses d’informations essentielles sur l’accrétion et la formation des astéroïdes. Pourtant, les études réalisées jusqu’ici n’ont pas permis de révéler l’origine des différences entre couronnes et matrice. Ceci est lié d’une part à la faible taille de grain et à l’hétérogénéité de ces assemblages qui les rendent difficiles à analyser, et d’autre part aux processus corps parents (altération aqueuse, métamorphisme) qui les ont modifiés par la suite. Cette thèse a donc pour objectif de (1) développer une méthodologie analytique quantitative pour l’étude des assemblages hétérogènes submicrométriques basée sur la microscopie électronique et couplée à des procédures de traitement de données hyperspectrales ; (2) réaliser une étude comparative des couronnes à grains fins et de la matrice adjacente dans les météorites les plus primitives (faible altération/métamorphisme ; Paris, Semarkona, DOM 08006 et QUE 99177); (3) proposer un scénario de formation pour les couronnes des chondres et apporter des nouvelles contraintes sur les premières étapes de l’accrétion des solides dans le disque proto-planétaire. La comparaison multi-échelle matrice/couronnes et l’utilisation des abondances modales des phases, de leurs morphologies et de leurs compositions chimiques nous ont permis de contraindre la nature des précurseurs accrétés dans les chondrites et de remonter aux processus secondaires les ayant modifiés. Nous montrons que la poussière silicatée du disque se situant dans l’environnement proche de la région de formation des chondres a été thermiquement modifiée et compactée à la surface des chondres avant d’être incorporée avec le reste de la matrice pour former les premiers astéroïdes. Nous en concluons que cette étape est à l’origine des différences entre couronnes et matrice. Ces résultats pourraient permettre de faire le lien entre les observations pétrographiques et les modèles astrophysiques de l’accrétion des premiers astéroïdes.

 

Mots-clés : Astrominéralogie, Chondrite, Microscopie Électronique, Traitements de Données, Hyperspy

 

 

Study of the accretion of the firsts solids of our solar system using advanced electron microscopy

 

Primitive chondrites are the witness of the accretion of the first asteroids. They are composed of coarse - grained high-temperature components (mainly chondrules with a typical size of ~50 µm-1 mm) and of fine interstitial matrix, rich in volatile elements such as water and organic matter. The fine-grained rims (FGRs) at the interface of these two components contain essential information on the accretion and the formation of the first asteroids. However, to date, the origin of the differences between FGRs and matrix has not been explained. This is due, on the one hand, to the small grain size (< 3µm) and the heterogeneity of these assemblages which make them difficult to analyze, and, on the other hand, to the parent bodies processes (aqueous alteration/metamorphism) which modified them and obscured their original specificities. This limits our understanding of their origin and formation environment. The objective of this thesis work is therefore to (1) develop a new quantitative methodology for the study of submicrometric heterogeneous assemblages based on coupled electron microscopies and hyperspectral data processing; (2) carry out a comparative study of FGRs and their adjacent matrix in the most primitive meteorites (weak alteration/metamorphism; Paris, Semarkona, DOM 08006 and QUE 99177); (3) propose a formation scenario for FGRs and evaluate it with respect to existing accretion scenarios. The multi-scale matrix/FGR comparison, using phase modal abundances, morphologies and chemical compositions allowed us to effectively constrain the nature of the precursors and the early stages of dust accretion on chondrules as well as to identify specific secondary processes that affected them. We show in the different chondrites that the silicate dust from the disk in the environm ent of the chondrule formation region was thermally modified and compacted onto the surfaces of chondrules before being incorporated with the rest of the matrix to form the first asteroids. We conclude that this early process caused primary differences between FGRs and matrix. Our results allow to discuss the petrographic observations with respect to the astrophysical model of dust accretion.

 

Key-words: Astromineralogy, Chondrite, Electron Microscopy, Data Processing, Hyperspy

Jury

  • Bertrand Devouard - Rapporteur
  • Guy Libourel - Rapporteur
  • Lydie Bonal - Examinatrice
  • Cécile Engrand - Examinatrice   
  • Violaine Sauter - Examinatrice
  • Hugues Leroux - Directeur de thèse
  • Brigitte Zanda - Co-directrice de thèse
  • Corentin Le Guillou - Co-encadrant de thèse
  • Adrian. J. Brearley - Invité

Cécile Duflot - 09/09/19

Traductions :

    Zoom Science - La glace d’ammoniac est-elle stable à l’intérieur de Neptune ? - Septembre 2019

    La molécule d’ammoniac (NH3) est peu abondante sur Terre à l’état naturel, mais son rôle important dans l’industrie chimique, notamment pour la fabrication d’engrais, explique qu’elle soit produite massivement à plus de 100 Mt par an. Sa synthèse, via le procédé Haber, repose sur la réaction du diazote...

    » Lire la suite

    Contact

    Guillaume Fiquet (Guillaume.Fiquet @ upmc.fr)

    Directeur de l'institut

    33 +1 44 27 52 17

     

    Nalini Loret (Nalini.Loret @ upmc.fr)

    Attachée de direction

    33 +1 44 27 52 17

     

    Jérôme Normand (jerome.normand @ upmc.fr)

    Gestion du personnel

    Réservation des salles

    33 +1 44 27 74 99

     

    Antonella Initili (Antonella.Intili @ upmc.fr)

    Accueil et logistique

    Réservation des salles

    33 +1 44 27 25 61

     

    Danielle Raddas (cecile.duflot @ impmc.upmc.fr)

    Gestion financière

    33 +1 44 27 56 82

     

    Cécile Duflot (cecile.duflot @ upmc.fr)

    Communication

    33 +1 44 27 46 86

     

    Contact unique pour l'expertise de météorites

     

    Contact unique pour l'expertise de matériaux et minéraux

     

    Stages d'observation pour les 3e et les Seconde : feriel.skouri-panet@upmc.fr (feriel.skouri-panet @ upmc.fr)

     

    Adresse postale

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5

     

    Adresse physique

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5

     

    Adresse de livraison

    Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

    Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61

     

     

    Fax : 33 +1 44 27 51 52

    L'IMPMC en chiffres

    L'IMPMC compte environ 195 personnes dont :

     

    • 40 chercheurs CNRS
    • 46 enseignants-chercheurs
    • 19 ITA CNRS
    • 15 ITA non CNRS
    • 50 doctorants
    • 13 post-doctorants
    • 12 bénévoles

     

     Chiffres : janvier 2016