ERC HYDROMAOrigin and evolution of organic matter in carbonaceous chondrites: influence of hydrothermal processes
The ERC HYDROMA (PI Laurent Remusat) aims at deciphering the imprint of secondary aqueous processes on the organic molecules detected in carbonaceous chondrites, with a specific interest on their hydrogen and nitrogen isotope compositions. There is a huge dataset of isotope compositions in various organic components in several meteorites. However, the accurate interpretation of these data in terms of physico-chemical conditions in the solar system is hampered by the impact of secondary processes that affected the carbonaceous parent bodies very early in the solar system history.
HYDROMA intends to disclose the hydrogen and nitrogen isotope signatures of organic precursors and the effects of aqueous alteration that may have modified these signatures. The research proposed in HYDROMA will answer to three major questions:
- How did the hydrothermal events modify the molecular and isotope signatures of the organic matter in carbonaceous chondrites?
- Is there any record of the primordial signature of organic precursors?
- Is it possible to use the isotope composition of organic molecules for determining duration and temperature of hydrothermal events on carbonaceous asteroids?
The HYDROMA project will consist in the experimental investigation of molecular evolution of organic compounds and isotopic exchange between organic molecules, hydrated minerals and water in the context of hydrothermal alteration.
We will determine the isotope composition of the organic precursors accreted on the carbonaceous asteroids to identify the synthesis environments in the protoplanetary disk or the parent molecular cloud. Our results will also allow using the isotope compositions of organic compounds as a new thermometer and chronometer to precise the hydrothermal events on carbonaceous asteroids
Dans cette rubrique
Zoom Science - Septembre 2015 - Les effets du sel sur la symétrisation de la glace planétaire
Des physiciens de l’Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC - CNRS/UPMC/IRD/MNHN), et du Earth and Planetary Science Laboratory de l’EPFL à Lausanne, ont montré que la présence de sels dans la glace empêche la transition sous pression de la phase moléculaire VII...
Contact
A. Marco Saitta
Directeur de l'institut
marco.saitta(at)sorbonne-universite.fr
Ouafa Faouzi
Secrétaire générale
ouafa.faouzi(at)sorbonne-universite.fr
Jérôme Normand
Gestion du personnel
Réservation des salles
jerome.normand(at)sorbonne-universite.fr
Antonella Intili
Accueil et logistique
Réservation des salles
antonella.intili(at)sorbonne-universite.fr
Idanie Alain, Sanaz Haghgou, Hazem Gharib, Angélique Zadi
Gestion financière
impmc-gestion(at)cnrs.fr
Cécile Duflot
Communication
cecile.duflot(at)sorbonne-universite.fr
Contact unique pour l'expertise de matériaux et minéraux
Stages d'observation pour élèves de 3e et de Seconde
feriel.skouri-panet(at)sorbonne-universite.fr
Adresse postale
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590
Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5
Adresse physique
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5
Adresse de livraison
Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.
Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61
Fax : 33 +1 44 27 51 52