About ERC HYDROMA
Carbonaceous chondrites (CC) are believed to be fragments of carbonaceous asteroids from the asteroid belt. They contain up to 4wt% of organic compounds, showing a huge diversity and extremely variable H and N isotope compositions. These isotope compositions can relate to synthesis environments but the exact nature of the processes that influenced the formation of organic compounds in CC remains unresolved. Part of the issue comes from the occurrence of hydrothermal alteration on the chondrites that exhibit the largest content in organic matter. Hydrothermal alteration may have modified the chemical and isotopic signature of organic molecules, but the extent of these modifications is not yet constrained, leaving a lot of uncertainties on the interpretation of H and N isotope ratios.
The HYDROMA project aims at determining the effects of hydrothermal alteration on the D/H and 15N/14N ratios of organic molecules in CC. This project will rely on an innovative experimental approach to quantify isotopic exchange of hydrogen and nitrogen between organic compounds and the hydrothermal fluid. We will also assess the influence of several inorganic phases that occur in the matrices of CC, including silicates, sulfides, oxides or metal, on the evolution of organic molecules during hydrothermal alteration. HYDROMA will provide a self-consistent determination of the extent and the kinetics of the modification of the isotopic signatures recorded in organic molecules. Hence, it will improve the understanding of H and N-isotope systematics of organic matter in CC. HYDROMA will permit using isotope composition of organic compounds to constrain the hydrothermal events (duration, temperature) on carbonaceous asteroids.
This multidisciplinary research will shed new light on the origin and reprocessing of organic matter in the early solar system, and its delivery to rocky planets, including the Earth, thus disclosing the origin of prebiotic molecules on our planet.
Egalement dans la rubrique
Zoom Science - Septembre 2015 - Les effets du sel sur la symétrisation de la glace planétaire
Des physiciens de l’Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC - CNRS/UPMC/IRD/MNHN), et du Earth and Planetary Science Laboratory de l’EPFL à Lausanne, ont montré que la présence de sels dans la glace empêche la transition sous pression de la phase moléculaire VII...
Contact
A. Marco Saitta
Directeur de l'institut
marco.saitta(at)sorbonne-universite.fr
Ouafa Faouzi
Secrétaire générale
ouafa.faouzi(at)sorbonne-universite.fr
Jérôme Normand
Gestion du personnel
Réservation des salles
jerome.normand(at)sorbonne-universite.fr
Antonella Intili
Accueil et logistique
Réservation des salles
antonella.intili(at)sorbonne-universite.fr
Idanie Alain, Sanaz Haghgou, Hazem Gharib, Angélique Zadi
Gestion financière
impmc-gestion(at)cnrs.fr
Cécile Duflot
Communication
cecile.duflot(at)sorbonne-universite.fr
Contact unique pour l'expertise de matériaux et minéraux
Stages d'observation pour élèves de 3e et de Seconde
feriel.skouri-panet(at)sorbonne-universite.fr
Adresse postale
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590
Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5
Adresse physique
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5
Adresse de livraison
Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.
Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61
Fax : 33 +1 44 27 51 52