Cystic Fibrosis and the CFTR protein
Cystic fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, altering chloride efflux in epithelial cells. CFTR belongs to the large ABC transporter superfamily, but is the only member known to function as an ion channel. Therefore, it can be considered as a “broken” ABC transporter, having an atrophied or uncoupled cytoplasmic-side gate. However, the structural features associated with this specific evolution remained for a long time poorly understood in absence of experimental 3D structure of the full-length protein. These experimental 3D structures were particularly hard to obtain due to the low solubility of the protein and its limited thermal stability. Contributing to this are the dynamics fluctuations of the protein, exacerbated by intrinsic disorder associated with specific regions, especially the large regulatory (R) region, linking the two halves of the protein and regulating the protein activity through phosphorylation. Understanding the CFTR 3D structure and its conformational and functional landscape, within its interaction network, could however provide insights into the way the CFTR folding and functional defects could be rescued.
We have made several contributions to the CFTR field, by first modelling the 3D structure of the nucleotide-binding domains (NBDs) heterodimer (Callebaut et al. 2004, Eudes et al 2005) and then, that of the assembly of NBDs and Membrane-Spanning Domains (MSDs), once experimental 3D structures of ABC exporters NBDs:MSDs assemblies were available (Mornon et al. 2008, Mornon et al. 2009).
Furthermore, by using refined sequence alignments and molecular dynamics simulations (now including advanced methods, such as metadynamics), we were able to understand the specific evolution of this member of the ABC transporter family towards a channel function, especially by highlighting the presence of cytoplasmic portals allowing ion flux from the cytosol. Our models have been supported by various experimental data, including the recent cryo-EM 3D structures (Liu et al. 2017 Cell 169:85-95, Zhang and Chen 2017 Cell 170: 483-91). They are used to understand the molecular basis of CFTR function (see for instance Cai et al. 2015, Billet et al. 2013) and the impact of CF-causing mutations (see for instance Hinzpeter et al. 2017, Sharma et al. 2015) and are considered to design specific therapeutical approaches (WO/2016/087665, Zelli et al. 2018).
This expertise is now also applied to the study of other ABC transporters, such as the lipid transporter ABCB4 (Delaunay et al. 2017), for which similarities in rescuing mechanisms were identified with CFTR.
This work is supported by the French Association Vaincre La Mucoviscidose
People involved at IMPMC :
Isabelle Callebaut
Jean-Paul Mornon
Fabio Pietrucci
Post-doctoral fellows: Brice Hoffmann (untill 2017), Ahmad Elbahnsi
References : Pubmed
Egalement dans la rubrique
Zoom Science - La Collection de Microbialites du MNHN : étude géochimique à travers le temps et l’espace
Les microbialites sont des structures sédimentaires microbiennes qui constituent certaines des plus anciennes traces de vie sur Terre. En raison de leur dépôt dans un large éventail d'environnements et de leur présence pendant la majeure partie des temps géologiques, les signatures sédimentologiques...
Contact
A. Marco Saitta
Directeur de l'institut
marco.saitta(at)sorbonne-universite.fr
Ouafa Faouzi
Secrétaire générale
ouafa.faouzi(at)sorbonne-universite.fr
Jérôme Normand
Gestion du personnel
Réservation des salles
jerome.normand(at)sorbonne-universite.fr
Antonella Intili
Accueil et logistique
Réservation des salles
antonella.intili(at)sorbonne-universite.fr
Idanie Alain, Sanaz Haghgou, Hazem Gharib, Angélique Zadi
Gestion financière
impmc-gestion(at)cnrs.fr
Cécile Duflot
Communication
cecile.duflot(at)sorbonne-universite.fr
Contact unique pour l'expertise de matériaux et minéraux
Stages d'observation pour élèves de 3e et de Seconde
feriel.skouri-panet(at)sorbonne-universite.fr
Adresse postale
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590
Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5
Adresse physique
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5
Adresse de livraison
Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.
Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61
Fax : 33 +1 44 27 51 52