About ERC Planet Dive
The discovery of extra-solar planets orbiting other stars has been one of the major breakthroughs in astronomy of the past decades. Exoplanets are common objects in the universe and planetary systems seem to be more diverse than originally predicted. The use of radius-mass relationships has been generalized as a means for understanding exoplanets compositions, in combination with equations of state of main planetary components extrapolated to TeraPascal (TPa) pressures.
In the most current description, Earth-like planets are assumed to be fully differentiated and made of a metallic core surrounded by a silicate mantle, and possibly volatile elements at their surfaces in supercritical, liquid or gaseous states. This model is currently used to infer mass-radius relationship for planets up to 100 Earth masses but rests on poorly known equations of states for iron alloys and silicates, as well as even less known melting properties at TPa pressures.
The ERC Panet Dive thus aims at providing experimental references for equations of state and melting properties up to TPa pressure range, with the combined use of well-calibrated static experiments (laser-heated diamond-anvil cells) and laser- compression experiments capable of developing several Mbar pressures at high temperature, coupled with synchrotron or XFEL X-ray sources. I propose to establish benchmarking values for the equations of states, phase diagrams and melting curves relations at unprecedented P-T conditions. The proposed experiments will be focused on simple silicates, oxides and carbides (SiO2, MgSiO3, MgO, SiC), iron alloys (Fe-S, Fe-Si, Fe-O, Fe-C) and more complex metals (Fe,Si,O,S) and silicates (Mg,Fe)SiO3. Our research team will address key questions concerning planets with 1-5 Earth masses as well as fundamental questions about the existence of heavy rocky cores in giant planets.
Kepler-452b, Kepler-22b, Kepler-69c, Kepler-62f, Kepler-186f © NASA/Ames/JPL-Caltech
Egalement dans la rubrique
Zoom Science - La Collection de Microbialites du MNHN : étude géochimique à travers le temps et l’espace
Les microbialites sont des structures sédimentaires microbiennes qui constituent certaines des plus anciennes traces de vie sur Terre. En raison de leur dépôt dans un large éventail d'environnements et de leur présence pendant la majeure partie des temps géologiques, les signatures sédimentologiques...
Contact
A. Marco Saitta
Directeur de l'institut
marco.saitta(at)sorbonne-universite.fr
Ouafa Faouzi
Secrétaire générale
ouafa.faouzi(at)sorbonne-universite.fr
Jérôme Normand
Gestion du personnel
Réservation des salles
jerome.normand(at)sorbonne-universite.fr
Antonella Intili
Accueil et logistique
Réservation des salles
antonella.intili(at)sorbonne-universite.fr
Idanie Alain, Sanaz Haghgou, Hazem Gharib, Angélique Zadi
Gestion financière
impmc-gestion(at)cnrs.fr
Cécile Duflot
Communication
cecile.duflot(at)sorbonne-universite.fr
Contact unique pour l'expertise de matériaux et minéraux
Stages d'observation pour élèves de 3e et de Seconde
feriel.skouri-panet(at)sorbonne-universite.fr
Adresse postale
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590
Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5
Adresse physique
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5
Adresse de livraison
Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.
Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61
Fax : 33 +1 44 27 51 52