Motivations
This project aims at investigating the mixtures of water, ammonia and methane ices over a wide range of pressure (1-100 GPa) and temperature (100-4000 K). Such mixtures are ubiquitous in the Universe and are present under extreme conditions of pressure and temperature inside giant icy planets (Neptune, Uranus), their satellites (e.g. Titan, Ganymede) and extra-solar planets. Although they are composed of simple molecules (H2O, NH3 and CH4), their properties remain largely unknown at very high density. Up to now, only the pure ices have been extensively investigated. These studies have highlighted interesting and unexpected properties: three exotic solid phases, called superionic, ionic and symmetric states, have been uncovered in pure water and ammonia ices around 1 Mbar (=100 GPa) (see figure 1). In these states, the chemical bonds, whether covalent or hydrogen (H) bonds, are strongly modified. In particular, the superionic phase is a spectacular state of matter presenting simultaneously a crystalline (the fixed ion lattice) and a liquid (the diffusive ions) behavior. Superionic water and ammonia ices are predicted to be excellent proton conductors, and the existence of superionicity in ice mixtures, if demonstrated, could be a key element to explain the unusual magnetic field of the giant icy planets.
Besides the interests in condensed-matter physics and planetary sciences, this project is expected to have an impact over a wide range of disciplines, including inorganic chemistry, materials science and biology. Indeed, ice mixtures are the most simple and are thus ideal systems to study the four most important hydrogen bonds O-H..O, N-H..N, O-H..N and N-H..O, and the mechanisms of proton transfer along these bonds. This topic has direct implications for our understanding of various phenomena, including the high melting point of water, the shape of proteins and photosynthesis. In this context, high pressure investigations provide a unique tool to study these phenomena at it allows varying the strength of the H bonds through the reduction of the bond length, without the perturbation of changing chemistry. Moreover, understanding the structure-properties relationship and the mechanism of proton delocalization in these simple systems could be useful for the development of superionic compounds as components of solid-state batteries, a topic currently under intensive investigation.
Egalement dans la rubrique
Zoom Science - La Collection de Microbialites du MNHN : étude géochimique à travers le temps et l’espace
Les microbialites sont des structures sédimentaires microbiennes qui constituent certaines des plus anciennes traces de vie sur Terre. En raison de leur dépôt dans un large éventail d'environnements et de leur présence pendant la majeure partie des temps géologiques, les signatures sédimentologiques...
Contact
A. Marco Saitta
Directeur de l'institut
marco.saitta(at)sorbonne-universite.fr
Ouafa Faouzi
Secrétaire générale
ouafa.faouzi(at)sorbonne-universite.fr
Jérôme Normand
Gestion du personnel
Réservation des salles
jerome.normand(at)sorbonne-universite.fr
Antonella Intili
Accueil et logistique
Réservation des salles
antonella.intili(at)sorbonne-universite.fr
Idanie Alain, Sanaz Haghgou, Hazem Gharib, Angélique Zadi
Gestion financière
impmc-gestion(at)cnrs.fr
Cécile Duflot
Communication
cecile.duflot(at)sorbonne-universite.fr
Contact unique pour l'expertise de matériaux et minéraux
Stages d'observation pour élèves de 3e et de Seconde
feriel.skouri-panet(at)sorbonne-universite.fr
Adresse postale
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590
Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5
Adresse physique
Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5
Adresse de livraison
Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.
Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61
Fax : 33 +1 44 27 51 52