Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - Sorbonne Université/CNRS/MNHN/IRD

E-séminaire - Size effects in metals and alloys: from dislocation plasticity to grain boundary processes - Marc Legros

Lundi 12 octobre 2020 à 10h30


Marc Legros - CEMES, médaille d'argent du CNRS en 2018



The design of functional parts, from aircraft to microelectronics, often involves the choice of a material whose properties are supposed to be known. The mechanical properties of metals and alloys are often derived from stress-strain plots performed on centimeter-size samples from which elastic modulus, elastic limit (the maximum stress before reaching plastic deformation), hardening, tenacity,… are extracted. The subsequent scaling is made through the stress, that is supposed to be independent of the sample size.

In 2004, American researchers fabricated micrometer-sized pillars in monocrystalline nickel using a focused ion beam (FIB). By compressing them, they discovered that their elastic limit increased as the dimensions of the pillars decreased, undermining the possible transposition of the mechanical properties from a scale to another. While this apparent violation of critical stress invariance did not cause turmoil among aeronautical engineers, it puzzled researchers around the world for years. This "smaller is stronger" effect had long been observed in thin films, metallic wires or nanocrystalline metals (Hall-Petch's law), and because the dislocations are the "quanta of plastic deformation", they have been suspected early. Their role has recently been rationalized in terms of initial microstructure, confinement and multiplication processes. In this field of research, electron microscopy and in particular in-situ transmission electron microscopy where one can see the movements of dislocations in real time, proved essential.

We recently extended this approach to nanocrystalline metals in which deformation by dislocations is almost shut down. Because the proportion of atoms sitting in grain boundaries (GBs) is very large in this class of material, many "GB-mechanisms" have been fantasized at the end of last century to explain their mechanical properties. We will show that GBs can indeed serve as a vector for permanent deformation, but understanding how this occurs is at the very beginning.

Cécile Duflot - 13/10/20

Traductions :

    Egalement dans la rubrique

    Les séminaires ailleurs

    Nous avons sélectionné quelques sites sur lesquels sont recensés des séminaires pouvant vous intéresser :
    Semparis : les serveur des séminaires parisiens
    Laboratoire Léon Brillouin
    Colloquium Pierre et Marie Curie

    » Lire la suite


    A. Marco Saitta

    Directeur de l'institut



    Jérôme Normand

    Gestion du personnel

    Réservation des salles



    Antonella Intili

    Accueil et logistique

    Réservation des salles



    Sabine Filiu

    Gestion financière (gestionimpmc @


    Cécile Duflot



    33 +1 44 27 46 86


    Expertiser une météorite


    Contact unique pour l'expertise de matériaux et minéraux


    Stages d'observation pour élèves de 3e et de Seconde



    Adresse postale

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5


    Adresse physique

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5


    Adresse de livraison

    Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

    Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61



    Fax : 33 +1 44 27 51 52