Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - Sorbonne Université/CNRS/MNHN/IRD

Séminaire/Seminar - Planetary differentiation studied by in situ time-resolved X-ray diagnostics - Guillaume Morard

Vendredi 8 septembre 2023 à 14 h

IMPMC - Sorbonne Université - 4 place Jussieu - 75005 Paris - Barre 22-23, 4e étage, salle 401 

Guillaume Morard, chercheur à l'ISTerre (Grenoble)

Abstract

Understanding the mechanisms and chemistry in play in the deep Earth without direct rock samples is a strong motivation to study the physical properties and phase relations of materials constituting our planetary interior. 

As it formed, the Earth experienced a molten state as a result of large impacts, accretional energy and the contribution of short-lived radio-nuclides. This fully molten stage in planetary accretion, the so-called Magma Ocean (Tonks and Melosh, 1993), has strong implications for the subsequent evolution of the planet, from internal processes such as mantle convection and plate tectonics, up to the distribution of chemical elements, and notably the distribution of volatiles between the atmosphere and the interior of the planet (Elkins-Tanton, 2012), and may be different on Venus or other planets. The Earth then formed a differentiated structure, with a rocky mantle and metallic core, which is common among Earth-like planets and asteroids in the solar system. Past differentiation, as the solidification process starts upon cooling, the mechanical properties of the solid in coexistence with the liquid are required to constrain the heat dissipation related to orbital resonances, core-mantle differentiation mechanisms, and the long-term evolution of a mantle heat over the core

Conventional static compression using Diamond Anvil Cell recently allowed in situ X-ray diagnostics for samples over 500 GPa (Dewaele et al., 2018), albeit at ambient temperature. In addition, dynamic compression driven by high-power lasers easily reach pressures over 500 GPa and temperature over 10 000 K for geomaterials. Until recently, however, conventional diagnostics for laser-driven shock compression experiments were limited to optical measurement of pyrometry and velocimetry. The advent of new X-ray sources, such as Free Electron Laser (FEL) or upgraded synchrotrons (such as the Extremely Brilliant Source (EBS) upgrade at ESRF available since September 2020), opens a favorable window to develop new diagnostics or rethink the existing experimental programs. Indeed, the high brilliance of these new X-ray sources offers the possibility of unprecedented time-resolved in situ X-ray diagnostics, allowing to track high P-T processes at the nanosecond (ns) to microsecond (µs) timescales. Preventing chemical migration, contamination or grain growth, these diagnostics can now be coupled with dynamic or static compression, to unravel the structure and mechanical properties of geomaterials over a wide density range. 

 

References

Dewaele, A., Loubeyre, P., Occelli, F., Marie, O., Mezouar, M., 2018. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 9, 1–9. https://doi.org/10.1038/s41467-018-05294-2

Elkins-Tanton, L.T., 2012. Magma Oceans in the Inner Solar System. Annu. Rev. Earth Planet. Sci. 40, 113–139. https://doi.org/10.1146/annurev-earth-042711-105503

Tonks, W.B., Melosh, H.J., 1993. Magma ocean formation due to giant impacts. J. Geophys. Res. Planets 98, 5319–5333. https://doi.org/10.1029/92JE02726

30/08/23

Traductions :

    Egalement dans la rubrique

    Les séminaires ailleurs

    Nous avons sélectionné quelques sites sur lesquels sont recensés des séminaires pouvant vous intéresser :
    Semparis : les serveur des séminaires parisiens
    LPTMC
    SOLEIL
    ESPCI
    Laboratoire Léon Brillouin
    INSP
    IPGP
    CEA
    Colloquium Pierre et Marie Curie

    » Lire la suite

    Contact

    A. Marco Saitta

    Directeur de l'institut

    marco.saitta(at)sorbonne-universite.fr

      

    Jérôme Normand

    Gestion du personnel

    Réservation des salles

    jerome.normand(at)sorbonne-universite.fr

     

    Antonella Intili

    Accueil et logistique

    Réservation des salles

    antonella.intili(at)sorbonne-universite.fr

     

    Sabine Filiu

    Gestion financière

    gestionimpmc@impmc.upmc.fr (gestionimpmc @ impmc.upmc.fr)

     

    Cécile Duflot

    Communication

    cecile.duflot(at)sorbonne-universite.fr

    33 +1 44 27 46 86

     

    Expertiser une météorite

     

    Contact unique pour l'expertise de matériaux et minéraux

     

    Stages d'observation pour élèves de 3e et de Seconde

    feriel.skouri-panet(at)sorbonne-universite.fr

     

    Adresse postale

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5

     

    Adresse physique

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5

     

    Adresse de livraison

    Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

    Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61

     

     

    Fax : 33 +1 44 27 51 52