Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - Sorbonne Université/CNRS/MNHN/IRD

Soutenance de thèse de Lila Belhadi le mercredi 25 septembre 2013 à 10h30

IMPMC, Université P. et M. Curie, 4, Place Jussieu, 75005 Paris
Salle de conférence, 4e étage, Tour 22-23, Salle 401

 

Polyamorphisme induit par la pression dans les verres métalliques à base de cérium

 

 

 

 

Résumé

Les verres métalliques suscitent un intérêt grandissant dû à leurs propriétés physico-chimiques remarquables par rapport à leurs homologues cristallins. Parmi eux, les verres métalliques à base de cérium (VM-Ce) se distinguent par l'existence de polyamorphisme sous pression (transition de phase entre phases amorphes avec changement de densité et de structure locale à la transition).
Cette transition de phase amorphe-amorphe, inattendue dans ces systèmes à structure compacte, engendre des changements de structure sous pression qui n'ont pas été clairement identifiés. De plus, le rôle du cérium lors de cette transition semble décisif mais peu d'études ont été menées afin d'établir le lien entre les propriétés du cérium  pur et le polyamorphisme des VM-Ce. Grâce à des mesures de diffusion élastique de rayons x à haute pression (0-15 GPa), nous avons prouvé l'existence de polyamorphisme dans Ce69Al10Cu20Co1 .
D'importantes modifications sous pression de l'environnement local du cérium ont été mises en évidence lors de mesures d'absorption de rayons X (EXAFS) au seuil K du cérium. Par ailleurs, nous avons confirmé la nature électronique de cette transition (délocalisation sous pression de l'électron 4f du cérium) par des mesures d'absorption de rayons X (XANES) au seuil L3 du cérium. Le cérium pilotant cette transition, nous avons mené une étude complémentaire sur le cérium pur qui a montré l'existence d'un point critique dans le diagramme p,T du cérium cristallin lié à la délocalisation de l'électron f. Cependant, aucun point critique n'a été observé dans le diagramme de phase (0-15 GPa, 300-340 K) de Ce69Al10Cu20Co1 par diffusion élastique de rayons X à haute température.

 

Abstract

Metallic glasses are currently of growing interest worldwide due to their remarkable physicochemical properties with regard to their crystalline counterparts. Among them, the cerium based metallic glasses (Ce-MG) distinguish themselves by the existence of polyamorphism under pressure (phase transition between amorphous phases with change of

density and local structure at transition).

This transition, unexpected in these spatially compact systems, leads to structural changes under pressure which were not clearly identified. Furthermore, the role of the cerium constituent during this transition seems decisive but only few works studied the link between the properties of the pure cerium and the polyamorphism in the Ce-MG. Using x ray elastic diffusion techniques at high-pressure (0-15 GPa), we proved the existence of polyamorphism in Ce69Al10Cu20Co1 Important modifications under pressure of the local environment of the cerium were revealing by x ray absorption measurements at Ce-K edge.
On the other hand, we confirmed the electronic nature of this transition (4f electronic delocalization under pressure) by x ray absorption measurements (XANES) at Ce-L3edge. The cerium piloting this transition, we studied the pure cerium properties along the gamma-alpha transition, transition also induced by 4f electronic delocalization under pressure. This complementary work showed the existence of a critical point in the p, T diagram of crystalline cerium at the end of gamma-alpha transition line.
However, our x ray elastic diffusion measurement did not show the occurrence of such a critical point in VM-Ce phase diagram (0-15 GPa, 300-340 K).

 

Composition du jury

Frédéric DECREMPS (Professeur - Université Paris VI) Directeur de thèse
Daniel BRAITHWAITE (Chercheur CEA Grenoble) Rapporteur
Marie FORET (Professeur - Université de Montpellier II) Rapporteur
Gunnar WECK (Chercheur Ingénieur - CEA/DAM/DIF) Examinateur
Sakura PASCARELLI (Responsable de ligne - ESRF) Examinatrice
Andrea GAUZZI (Professeur - Université Paris VI) Examinateur

 

 

Cécile Duflot (cecile.duflot @ impmc.upmc.fr) - 17/02/16

Traductions :

    Zoom Science - Diffusion Résonante Inélastique des rayons X, une technique puissante pour sonder les matériaux

    La diffusion inélastique résonante des rayons X (RIXS) est une technique puissante combinant spectroscopie et diffusion inélastique pour étudier la structure électronique des matériaux. Elle repose sur l’interaction des rayons X avec la matière, où les spectres RIXS peuvent être approximés comme une...

    » Lire la suite

    Contact

    A. Marco Saitta

    Directeur de l'institut

    marco.saitta(at)sorbonne-universite.fr

     

    Ouafa Faouzi

    Secrétaire générale

    ouafa.faouzi(at)sorbonne-universite.fr

     

    Jérôme Normand

    Gestion du personnel

    Réservation des salles

    jerome.normand(at)sorbonne-universite.fr

     

    Antonella Intili

    Accueil et logistique

    Réservation des salles

    antonella.intili(at)sorbonne-universite.fr

     

    Idanie Alain, Sanaz Haghgou, Hazem Gharib, Angélique Zadi

    Gestion financière

    impmc-gestion(at)cnrs.fr

     

    Cécile Duflot

    Communication

    cecile.duflot(at)sorbonne-universite.fr

     

     

    Expertiser une météorite

     

    Contact unique pour l'expertise de matériaux et minéraux

     

    Stages d'observation pour élèves de 3e et de Seconde

    feriel.skouri-panet(at)sorbonne-universite.fr

     

    Adresse postale

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Sorbonne Université - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5

     

    Adresse physique

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 - Sorbonne Université - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5

     

    Adresse de livraison

    Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

    Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61

     

     

    Fax : 33 +1 44 27 51 52